

P3 Joist I-Joists EACOM Timber Corporation.

PR-L261

Revised June 11, 2021

Products: PJI Prefabricated Wood I-Joists

EACOM Timber Corporation, 1100 Rene-Levesque Blvd. West Suite 2110, Montreal, Quebec, Canada H3B 4N4

(514) 848-6815 or (877) 243-2266

Plant: EACOM, 1195 Peoples Road, Sault Ste. Marie, ON, Canada P6C 3W7

www.eacom.ca

1. Basis of the product report:

- 2021, 2018, 2015, and 2012 International Building Code (IBC): Sections 104.11
 Alternative Materials and 2303.1.2 Prefabricated wood I-joists
- 2021, 2018 and 2015 International Residential Code (IRC): Sections 104.11 Alternative Materials, and R502.1.2 and R802.1.8 (2021 and 2018 IRC only) Prefabricated wood ljoists
- 2012 IRC: Sections 104.11 Alternative Materials and R502.1.4 Prefabricated wood Ijoists
- ASTM D5055-16, D5055-13e1, D5055-13, and D5055-09 recognized by the 2021 IBC and IRC, 2018 IBC and IRC, 2015 IBC and IRC, and 2012 IBC and IRC, respectively
- Performance Standard for APA EWS I-Joists, PRI-400
- 2021, 2015, and 2008 ANSI/AWC Special Design Provisions for Wind and Seismic (SPDWS) recognized by the 2021, 2018 and 2015, and 2012 IBC, respectively
- APA Reports T2001P-41, T2002P-3, T2002P-19, T2003P-32, T2003P-53, T2003P-64B, T2005P-54, T2005P-56, T2005P-102, T2007P-105B, T2008P-68, T2008P-90, T2009P-07A, T2009P-35, T2015L-05B, T2017L-25, T2019P-65, and T2021P-17, and other qualification data

2. Product description:

P3 Joist I-Joists® covered by this report, as described in Table 1, are made with lumber flanges and OSB web in accordance with the in-plant manufacturing standard approved by APA.

3. Design properties:

Tables 2 and 3 lists the design properties for P3 Joist I-Joists. Table 4 shows the allowable lateral shear capacities of P3 Joist I-Joists in diaphragm applications. The allowable spans for P3 Joist I-Joists shall be in accordance with the recommendations provided by the manufacturer (www.eacom.ca/wp-content/uploads/2018/02/Eacom-P3-US-Product-Guide-English.pdf) and with APA *Performance Rated I-Joists*, Form Z725 (www.apawood.org/resource-library) for depths contained in the PRI Series.

4. Product installation:

P3 Joist I-Joists shall be installed in accordance with the recommendations provided by the manufacturer (see link above) and APA *I-Joist Construction Details - Performance Rated I-Joists in Floor and Roof Framing*, Form D710 (see link above). Permissible web holes and cantilever reinforcements shall be in accordance with the recommendations provided by the manufacturer, and with APA Form D710.

Fire-rated assemblies:

Fire-rated assemblies shall be constructed in accordance with the recommendations provided by the manufacturer (see link above), APA Product Report PR-S261, or APA Design/Construction Guide: *Fire-Rated Systems*, Form W305 (see link above).

6. Limitations:

- a) P3 Joist I-Joists shall be designed in accordance with the code using the design properties specified in this report.
- b) P3 Joist I-Joists are limited to dry service conditions where the average equilibrium moisture content of sawn lumber is less than 16 percent.
- c) P3 Joist I-Joists are produced at EACOM's facility under a quality assurance program audited by APA.
- d) This report is subject to re-examination in one year.

7. Identification:

P3 Joist prefabricated wood I-joists described in this report are identified by a label bearing the manufacturer's name (EACOM) and/or trademark, the APA assigned plant number (1058), the I-joist depth and series, the APA logo, the report number PR-L261, and a means of identifying the date of manufacture.

Table 1. Description of PJI Series I-joists (a)

Joist Series	•	Fla	Web			
	Joist Depths,		Dimer	nsion		Thistoness
	(in.)	Material	Depth, (in.)	Width, (in.)	Material	Thickness, (in.)
PJI-40	9-1/4 – 16	Proprietary SPF	1-1/2	2-1/2	OSB	3/8
PJI-60	9-1/2 – 16	MSR SPF	1-1/2	2-1/2	OSB	3/8
PJI-65	11-7/8 – 16	Proprietary SPF	1-1/2	3-1/2	OSB	3/8
PJI-80	9-1/2 – 24	MSR SPF	1-1/2	3-1/2	OSB	7/16
PJI-90	11-7/8 – 24	MSR SPF	1-1/2	3-1/2	OSB	7/16

⁽a) Referenced dimensions are nominal. Tolerances are as specified in the in-plant quality manual.

Table 2. Design Properties (Allowable Stress Design) for P3 Joist I-Joists (a)

Depth	Joist Series	Also	EI ^(b)	M ^(c)	V(q)	VLC	K ^(g)
(in.)	Designation	Qualified for	(10 ⁶ lbf-in. ²)	(lbf-ft)	(lbf)	(lbf/ft)	(10 ⁶ lbf)
9-1/4	9-1/4" PJI-40	N.A.	181	2,690	1,080	2,000	4.81
	9-1/2" PJI-40	9-1/2" PRI-40	193	2,735	1,400	2,000	4.94
9-1/2	9-1/2" PJI-60	9-1/2" PRI-60	231	3,780	1,400	2,000	4.94
	9-1/2" PJI-80	N.A	321	5,375	1,405	2,000	4.94
11-1/4	11-1/4" PJI-40	N.A.	289	3,380	1,345	2,000	5.85
	11-7/8" PJI-40	11-7/8" PRI-40	330	3,545	1,620	2,000	6.18
	11-7/8" PJI-60	11-7/8" PRI-60	396	4,900	1,620	2,000	6.18
11-7/8	11-7/8" PJI-65	11-7/8" PRI-60	454	5,085	1,620	2,000	6.18
	11-7/8" PJI-80	11-7/8" PRI-80	547	6,970	1,650	2,000	6.18
	11-7/8" PJI-90	N.A.	601	8,515	1,650	2,000	6.18
	14" PJI-40	14" PRI-40	482	4,270	1,815	2,000	7.28
	14" PJI-60	14" PRI-60	584	5,895	1,815	2,000	7.28
14	14" PJI-65	14" PRI-60	664	6,125	1,815	2,000	7.28
	14" PJI-80	14" PRI-80	802	8,390	1,865	2,000	7.28
	14" PJI-90	N.A.	877	10,255	1,865	2,000	7.28
	16" PJI-40	16" PRI-40	657	4,950	2,000	2,000	8.32
	16" PJI-60	16" PRI-60	799	6,835	2,000	2,000	8.32
16	16" PJI-65	16" PRI-60	901	7,105	2,000	2,000	8.32
	16" PJI-80	16" PRI-80	1,092	9,730	2,070	2,000	8.32
	16" PJI-90	N.A.	1,187	11,895	2,070	2,000	8.32
18	18" PJI-80	N.A.	1,413	11,000	2,450	2,000	9.36
10	18" PJI-90	N.A.	1,546	13,445	2,450	2,000	9.36
20	20" PJI-80	N.A.	1,790	12,180	2,550	1,720	10.40
20	20" PJI-90	N.A.	1,957	14,885	2,550	1,720	10.40
22	22" PJI-80	N.A.	2,214	13,340	2,650	1,440	11.44
	22" PJI-90	N.A.	2,419	16,305	2,650	1,440	11.44
24	24" PJI-80	N.A.	2,687	14,490	2,750	1,390	12.48
24	24" PJI-90	N.A.	2,934	17,710	2,750	1,390	12.48

⁽a) The tabulated values are design values for normal duration of load. All values, except for EI and K, shall be permitted to be adjusted for other load durations as permitted by the code.

Uniform Load:
$$\delta = \frac{5 \omega L^4}{384 EI} + \frac{\omega L^2}{K}$$
 [1]

Center-Point Load:
$$\delta = \frac{PL^3}{48 EI} + \frac{2 PL}{K}$$
 [2]

P = concentrated load (lbf), L = design span (in.), EI = bending stiffness of the I-joist (lbf-in.²), and K = coefficient of shear deflection (lbf).

⁽b) Bending stiffness (EI) of the I-joist.

⁽c) Moment capacity (M) of the I-joist, which shall not be increased by any repetitive member factor.

⁽d) Shear capacity (V) of the I-joist.

⁽e) Vertical Load Capacity of the I-joist.

Coefficient of shear deflection (K). For calculating uniform load and center-point load deflections of the P3 Joist® in a simple-span application, use Eqs. 1 and 2.

Table 3. Reaction Capacities (Allowable Stress Design) for P3 Joist I-Joists (a)

laterra dista Description (c) (llat)										
D 41	latat Oard	Intermediate Reaction (c) (lbf)				End Reaction (d) (lbf)				
Depth	Joist Series Designation	3-1/2 in. Brg. Length		5-1/2 in. Brg. Length		1-3/4 in. Brg. Length		4 in. Brg. Length		
(in.)		With Brg. Stiffeners		With Brg. Stiffeners		With Brg. Stiffeners		With Brg. Stiffeners		
		No	Yes	No	Yes	No	Yes	No	Yes	
9-1/4	PJI-40	2,700	2,880	2,795	3,230	1,080	1,080	1,080	1,080	
	PJI-40	2,755	2,900	3,245	3,245	1,195	1,275	1,260	1,400	
9-1/2	PJI-60	2,755	2,900	3,245	3,245	1,195	1,275	1,260	1,400	
	PJI-80	2,760	3,125	3,245	3,400	1,305	1,405	1,405	1,405	
11-1/4	PJI-40	2,755	3,010	3,245	3,340	1,200	1,310	1,345	1,345	
	PJI-40	2,755	3,045	3,245	3,375	1,200	1,460	1,430	1,620	
	PJI-60	2,755	3,045	3,245	3,375	1,200	1,460	1,430	1,620	
11-7/8	PJI-65	2,810	3,300	3,255	3,585	1,200	1,460	1,430	1,620	
	PJI-80	2,810	3,300	3,255	3,585	1,315	1,590	1,590	1,650	
	PJI-90	2,810	3,300	3,255	3,585	1,315	1,590	1,590	1,650	
	PJI-40	2,755	3,175	3,245	3,485	1,200	1,620	1,580	1,815	
	PJI-60	2,755	3,175	3,245	3,485	1,200	1,620	1,580	1,815	
14	PJI-65	3,020	3,455	3,435	3,745	1,200	1,620	1,580	1,815	
	PJI-80	3,020	3,455	3,435	3,745	1,325	1,760	1,615	1,865	
	PJI-90	3,020	3,455	3,435	3,745	1,325	1,760	1,615	1,865	
	PJI-40	2,755	3,300	3,245	3,595	1,200	1,750	1,720	2,000	
	PJI-60	2,755	3,300	3,245	3,595	1,200	1,750	1,720	2,000	
16	PJI-65	3,265	3,600	3,600	3,900	1,200	1,750	1,720	2,000	
	PJI-80	3,265	3,600	3,600	3,900	1,330	1,915	1,630	2,070	
	PJI-90	3,265	3,600	3,600	3,900	1,330	1,915	1,630	2,070	
40	PJI-80	3,200	3,950	3,650	4,350	1,340	1,925	1,650	2,450	
18	PJI-90	3,200	3,950	3,650	4,350	1,340	1,925	1,650	2,450	
00	PJI-80	3,200	3,950	3,650	4,350	1,350	2,170	1,665	2,550	
20	PJI-90	3,200	3,950	3,650	4,350	1,350	2,170	1,665	2,550	
20	PJI-80	3,200	3,950	3,650	4,350	1,355	2,415	1,685	2,650	
22	PJI-90	3,200	3,950	3,650	4,350	1,355	2,415	1,685	2,650	
24	PJI-80	3,200	3,950	3,650	4,350	1,365	2,660	1,700	2,750	
	PJI-90	3,200	3,950	3,650	4,350	1,365	2,660	1,700	2,750	

⁽a) The tabulated values are design values for normal duration of load. All values shall be permitted to be adjusted for other load durations provided that the adjusted reaction design value is not greater than the value specified below. Bearing stiffeners shall be installed in accordance with the recommendations provided by the manufacturer and APA D710.

	Joist Series Designation	Maximum adjusted reaction capacity (b) (lbf)								
Depth		3-1/2 in. Brg. Length		5-1/2 in. Brg. Length		1-3/4 in. Brg. Length		4 in. Brg. Length		
		With Brg. Stiffeners		With Brg. Stiffeners		With Brg. Stiffeners		With Brg. Stiffeners		
		No	Yes	No	Yes	No	Yes	No	Yes	
	PJI-40	3,345		5,260		1,675		3,825		
	PJI-60	4,135		6,495		2,065		4,725		
All	PJI-65	4,835		7,595		2,415		5,525		
	PJI-80	5,970		9,385		2,985		6,825		
	PJI-90	6,995		10,995		3,500		7,995		

⁽b) The allowable reaction design capacity interpolated in accordance with Footnotes (c) and (d) as necessary and multiplied by an applicable lead duration factor.

multiplied by an applicable load duration factor.

(c) Interpolation of the intermediate reaction between 3-1/2- and 5-1/2-inch bearing lengths is permitted.

⁽d) Interpolation of the end reaction between 1-3/4- and 4-inch bearing lengths is permitted.

Table 4. Allowable Shear (Pounds Per Foot) for Horizontal Wood Structural Panel Diaphragms Framed With P3 Joist I-Joist for Wind^(a) or Seismic Loading^(b,c)

Ocisinic	Loading							
			Minimum Nominal Width of Framing Members at Adjoining Panel Edges and Boundaries ^(e) (in.)	Blocked Diaphragms			Unblocked I	Diaphragms
Panel Grade	Common Nail Size	Minimum Nominal Panel Thickness (in.)		boundaries panel edges	cing (in.) at dia (all cases), at parallel to load Il panel edges 6) ^(f,g)	continuous d (Cases 3 &	Nails Spaced 6 in. max. at supported edges ^(f,g)	
	Naii Oize			6	4 ^(h)	2-1/2 ⁽ⁱ⁾	Case 1 (No	All other
				Nail spacing (in.) at other panel edges (Cases 1, 2, 3, & 4)			unblocked edges or continuous	configurations (Cases 2, 3, 4, 5
				6	6	4	joints parallel to load	&6)
	6d ^(d)	5/16	3	210	280	420	185	140
Structural 1 Grades	8d	3/8		300	400	600	265	200
Oraces	10d	15/32		360	480	720	320	240
	6d ^(d)	5/16		190	250	380	170	125
Objection of the original of		3/8		210	280	420	185	140
Sheathing, single floor and other	8d	3/8		270	360	540	240	180
grades covered in DOC PS 1 and PS 2		7/16		285	380	570	255	190
		15/32		300	400	600	265	200
	10d	15/32		325	430	650	290	215
		19/32		360	480	720	320	240

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 lbf = 4.448 N, 1 lbf/ft = 0.0146 N/mm.

(Footnotes on following page)

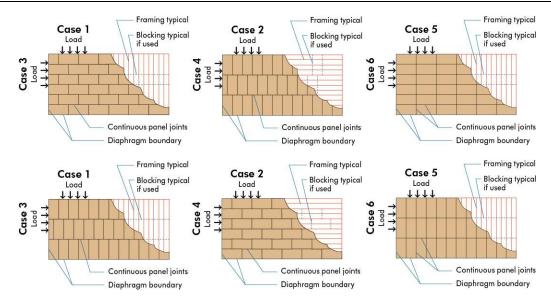


Figure 1. Diaphragm configurations

- (a) For wind load applications, the values in the table above shall be permitted to be multiplied by 1.4.
- (b) For shear loads of normal or permanent load duration as defined by the NDS, the values in the table above shall be multiplied by 0.63 or 0.56, respectively.
- (c) The tabulated allowable shear capacities are for I-joist series with flanges having a specific gravity (G) of 0.50 or higher (see Table 1). For G < 0.50 the allowable shear capacities shall be reduced by multiplying the allowable shear capacities by the Specific Gravity Adjustment Factor = [1-(0.5-G)]. The Specific Gravity Adjustment Factor shall not be greater than 1.
- (d) 8d common nails minimum are recommended for roofs due to negative pressures of high winds.
- (e) The minimum nominal width of framing members not located at boundaries or adjoining panel edges shall be 2 inches.
- (f) Space nails maximum 12 inches o.c. along intermediate framing members (6 inches o.c. when supports are spaced 48 inches o.c. or greater).
- (9) Fasteners shall be located 3/8 inch minimum from panel edges (see Figures 2, 3 and 4).
- (h) Adjacent nails within a row must be staggered ½ inch when nail spacing is 4 inches or less (see Figure 3).
- (i) Adjacent nails within a row must be staggered ½ inch at adjoining panel edges when nail spacing is 2-½ inches o.c. (see Figure 4).

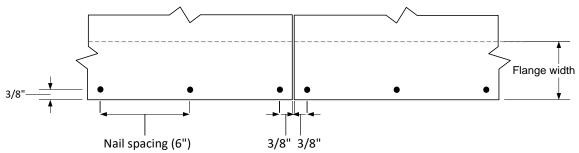


Figure 2. Non-staggered nails at diaphragm boundaries (see Footnote g), not to scale.

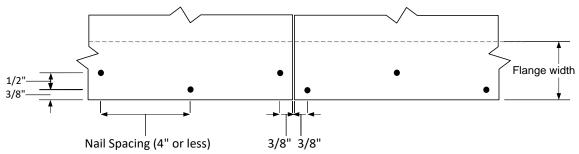


Figure 3. Staggered nails at diaphragm boundaries (see Footnote h), not to scale.

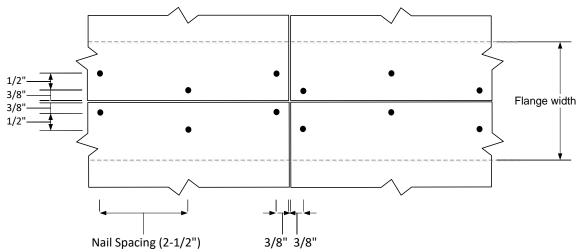


Figure 4. Staggered nails at adjoining panel edges (see Footnote i), not to scale.

APA – The Engineered Wood Association is an approved national standards developer accredited by American National Standards Institute (ANSI). APA publishes ANSI standards and Voluntary Product Standards for wood structural panels and engineered wood products. APA is an accredited certification body under ISO/IEC 17065 by Standards Council of Canada (SCC), an accredited inspection agency under ISO/IEC 17020 by International Code Council (ICC) International Accreditation Service (IAS), and an accredited testing organization under ISO/IEC 17025 by IAS. APA is also an approved Product Certification Agency, Testing Laboratory, Quality Assurance Entity, and Validation Entity by the State of Florida, and an approved testing laboratory by City of Los Angeles.

APA - THE ENGINEERED WOOD ASSOCIATION

HEADQUARTERS

7011 So. 19th St. • Tacoma, Washington 98466 Phone: (253) 565-6600 • Fax: (253) 565-7265 • Internet Address: <u>www.apawood.org</u>

PRODUCT SUPPORT HELP DESK

(253) 620-7400 • E-mail Address: help@apawood.org

DISCLAIMER

APA Product Report® is a trademark of APA – The Engineered Wood Association, Tacoma, Washington. The information contained herein is based on the product evaluation in accordance with the references noted in this report. Neither APA, nor its members make any warranty, expressed or implied, or assume any legal liability or responsibility for the use, application of, and/or reference to opinions, findings, conclusions, or recommendations included in this report. Consult your local jurisdiction or design professional to assure compliance with code, construction, and performance requirements. Because APA has no control over quality of workmanship or the conditions under which engineered wood products are used, it cannot accept responsibility for product performance or designs as actually constructed.